розроблено математична модель, яка опісує дінаміку конвекційного підйому нагрітіх газоутворень (біогазу) В атмосферному повітрі. Встановлені Вісотні та часові залежності швідкості переміщення, характерного розміру, надлішкової відносної температури, плавучості ціх газоутворень. Віконані числові ОЦІНКИ Зміни основних параметрів газоутворень для характерних СИТУАЦІЙ на полігоні твердих побутових відходів

Анотація наукової статті з наук про Землю і суміжних екологічних наук, автор наукової роботи - Rashkevich N., Goncharenko I., Anishenko L., Pisnia L., Petruhin S.


Mathematical modeling of biogas lifting from the municipal solid waste polygon

The mathematical model specified height and time dependence of the center movement speed, proper size (radius), excess relative temperature, buoyancy of heated gas formations (biogas) With convective rise in atmospheric air above the municipal solid waste polygon has been developed in the paper. The numerical estimates of changes in the main parameters of heated gas formations for proper situations from the municipal solid waste polygon have been provided


Область наук:
  • Науки про Землю та суміжні екологічні науки
  • Рік видавництва: 2018
    Журнал: ScienceRise
    Наукова стаття на тему 'математичне моделювання ПіДЙОМУ біогазу НАД ПОЛіГОНОМ твердих побутова відходів'

    Текст наукової роботи на тему «Математичне моделювання ПіДЙОМУ біогазу НАД ПОЛіГОНОМ твердих побутова відходів»

    ?8. ГОСТ 8829-84 (ДСТУ Б.В.2.6-7-95) Вироби будівельні бетонні та залізобетонні збірні. Методи випробування навантаженням. Правила оцінки міцності, жорсткості та тріщиностійкості. Держбуд СРСР. Москва: Видавництво стандартів, 1982. 20 с.

    9. ІІ-04-7, випуск 1. Збірні елементи будівель каркасно-конструкційних. Сходи. Залізобетонні сходи для будинків з висотою поверхів 3,3, 4,2 метра. Центральний інститут типових проектів. Москва, 1966. 20 с.

    10. Каталог приладів неруйнівного контролю якості залізобетону. НДІБК Держбуду СРСР. Київ, 1986. 24 с.

    Рекомендовано до публжацп д-р техн. наук, професор М1хайленко В. М.

    Дата надходження рукопису 10.07.2018

    Саченко 1лля Анатолшовіч, начальник ввддшу, Вщдш замовника, Товариство з обмеженою вщповвда-льшстю «Альта-Констракшн», вул. Качалова, 5-В, м. КШВ, прикрашені, 03146 ​​E-mail: Ця електронна адреса захищена від спам-ботів. Вам потрібно увімкнути JavaScript, щоб побачити її.

    УДК 504.3.504: 51-74

    DOI: 10.15587 / 2313-8416.2018.143412

    MATHEMATICAL MODELING OF BIOGAS LIFTING FROM THE MUNICIPAL SOLID WASTE POLYGON

    © N. Rashkevich, I. Goncharenko, L. Anishenko, L. Pisnia, S. Petruhin, E. Serikova

    Розроблено математичний модель, яка опісуе динамку конвекцтного пiдйому нагрiтіх газоутворень (6i-огазу) в атмосферному повiтрi. Встановлеш вісотш та часовi залежностi швідкостi перемщення, характерного розмiру, надлішково'1 вiдносноi температури, плавучостi ціх газоутворень. Віконанi число-вi про ^ нки змті основних параметрiв газоутворень для характерних сітуацт на полiгонi твердих побу-товіх вiдходiв

    Ключоei слова: бiогаз, математична модель, полiгон твердих побутових вiдходiв, нагрiтi газоутво-рення

    1. Introduction

    Municipal solid waste (MSW) polygons are located in the settlements vicinity. Decomposition products of municipal solid waste are danger not only for the environment, but also to public health [1, 2].

    There is a chemical pollution of atmospheric air over the territory of municipal solid waste polygons due to biogas formation. The biogas composition includes flammable, toxic substances, which create a threat of fires and explosions [3]. Biogas raises upward, carries by the wind for a sufficiently long distance, including to the populated areas direction. This can lead to massive people poisoning [3].

    Reported data of the fires occurrence and other emergencies in the waste disposal places [4, 5] indicates the imperfection of modern measures to prevent and minimize the impact of technogenic and ecological hazards sources on the environment and public health.

    2. Literature review

    The calculating biogas emissions models are mainly based on the Mono equation solution, first order decay, such as TNO, LandGEM, Gassim, Afvalzorg, EPER, IPCC, LFGEEN. These models take into account the carbon content, moisture, age of the waste, their ability to decompose and meteorological conditions. Meteorological conditions significantly affect to the composition and flux of landfill gas regeneration. Depending on the initial data, the techniques of Tabasaran-

    Rettenberger, Weber B., LandGEM, and AM Shaimova [6, 7] are of practical interest.

    Estimating models for the biogas components distribution in atmospheric air are in most cases constructed using the Gaussian distribution function [8], the OND-86 technique [9] and the turbulent diffusion equation.

    The temperature treatment in the polygon body based on numerical simulation [10] shows a temperature in the range of 20-50 ° C. This confirms the biogas ability to buoyancy, when its temperature is warmer than atmospheric air.

    The estimation of the maximum height and speed of the heated gas formations (biogas) rise, their size, buoyancy, excessive temperature as a function of altitude and rise time, especially in emergency situations, is necessary to ensure the environmental safety of municipal solid waste polygons.

    3. Aim and objectives

    The aim has been to treat the biogas spreading in convective rising to the atmosphere from the municipal solid waste polygon.

    For achieving the set aim the following tasks have been put forward:

    - to specify the main biogas parameters, such as height and time dependence of the center movement speed, proper size (radius), excess relative temperature, and buoyancy of heated gas formations (biogas);

    - to estimate the main parameters changes of heated gas formations from the municipal solid waste polygon for proper situations.

    4. Materials and methods

    It has been assumed that the biogas takes the sphere form with a gradually increasing radius. At the same time, the rate of cold air intake is proportional to both the area of ​​the emerging formation and the velocity of its center of mass rise. The coefficient of proportionality is considered constant. Since the formation radius is much smaller than the homogeneous atmosphere height and the troposphere thickness, the stratification of the atmosphere could be neglected.

    As initial data, let's choose the equations for the velocity of the center of heated volume air V, weight m, radius R, density p and absolute temperature T, the increase rate of the mass of the involved cold air with density p0, temperature T0 and the total buoyancy integral.

    4л 4л - F = - g5R, 3 3

    (1)

    where g - acceleration of gravity, 5 = (p0-p) / p0 -buoyancy.

    The biogas buoyancy conduced by the fact that its density is less than air p < p0. Thus, this gas is lighter. The used model is suitable if the volumes of heated formation are raise. As a result of biochemical processes of waste decomposition, the heat is released, which causes a temperature difference. The buoyancy is caused by T > T0. In this case 3 = (T0 - T) / T0. In the conditions of

    the MSW polygon, the both cases are take place simultaneously.

    The initial equations, taking into account air resistance, include the ratios for the lift speed, the mass of the cold air to be attracted and the total buoyancy integral of the heated formation:

    m dv ^ = F _ mg _ сp ^ 1g / 2. dt

    dm dt

    = ASv vp0,

    (2)

    (3)

    dF = _ N 2uR \ dt

    (4)

    where t - time, FA = p0Vg - Archimedean force, mg -gravity, Cp0v2S / 2 - air resistance force.

    For spherical gassing S = 7lR2 - cross sectional area, St = 4kR2 - sphere surface area, a - coefficient

    of cold air intake, N «102 c-1 - Brunt-Vaisala coefficient [11], C = CD + 8a - effective coefficient of resistance, Cfl - coefficient of resistance (for a sphere at moderate speeds CD« 0,5, aa «0,1 h C« 1,3 [11]). Because the m = pV = p / 3, p = p0T0 / T, equations (2) - (4) with considering (1) will take the form:

    dv = * g +<

    ? = 3C / 8 «0,5,

    dR

    R d5

    dt 3 (1 + 5) dt

    = Av (l + 5),

    d3j 1 dR) N v

    - + 351 - =--.

    dt ^ R dt) g

    The final solution has the form: 5 (R) = 50 (R / R) 3 або 5R3 = 50R

    (5)

    (6)

    (7)

    Relation (7) reflects the fact of total buoyancy integral conservation, that is dF / dt = 0, and F = F0.

    5. Results and discussion

    The calculations results of the main parameters describing the convective rise of heated formations in the atmosphere (biogas), for the values ​​of 90 equal to 10-3, 3-10-3, 10-2, 3-10-2, 10- 1, and also for R0, equal to 10, 100 and 1000 m (Tables 1 -3) has been presented in the paper. The maximum value of R0 has been determined not by the size of the emergency source, which could be ~ 1-10 km, but by the value of the external turbulence scale Lt in the atmosphere.

    Table 1

    The main parameters value of heated gas formation (R0 = 10 m)

    Parameters »0

    10 3T0-3 10 3-10-2 10

    z1, m 900 900 900 900 900

    Zmax, m 1000 1000 1000 1000 1000

    Vch, m / S 0,50 0,86 1,57 2,71 5,00

    Vmax, m / S 0,36 0,63 1,14 1,98 3,61

    to, S 111 64,6 35,4 20,5 11,1

    tv, S 55,6 31,75 17,54 10,10 5,54

    t3, s 94,3 52,9 29,2 16,8 9,2

    tR, S 383 158,75 87,7 50,50 27,7

    t, S max > 1,1104 6,5-103 3,5403 2,1T03 1,1103

    Table 2

    The main parameters value of heated gas formation (R0 = 100 m) _

    $ 0

    Parameters 10 3T0-3 10 3-10-2 10-1

    Zj, km 9 9 9 9 9

    , km 10 10 10 10 10

    och, m / s 1,50 2,71 5,00 8,57 15,00

    Omax, m / S 1,10 1,98 3,61 6,26 11,00

    to, s 370,3 205 111,1 64,8 37,0

    to, S 181,8 101,0 55,4 31,9 18,2

    t3, s 302,2 168,3 92 53,2 30,2

    tR, s 906,5 505 277 159,5 90,7

    tmax, s 3,7T04 2,05T04 1, И04 6,5-103 3,7T03

    Table 3 The main parameters value of heated gas formation (R0 = 1000 m)

    Parameters $ 0

    10 3-10-3 10 3 ^ 10-2 10-1

    Z, km 90 90 90 90 90

    Zmax, km 100 100 100 100 100

    och, ms 5,00 8,57 15,00 27,11 50,00

    Omx, m / s 3,61 6,26 11,00 19,80 36,1

    t0, s 1111 648,2 370,3 204,9 111,1

    O, s 554 319,5 181,8 101 55,4

    t3, s 923 532,5 303 168,3 92,3

    tR, s 2770 1597,5 909 505 277

    t, s max > 1,1-105 6.5T04 3,7-104 2-104 1,1104

    Tables 1-3 show that with 90 increasing the spatial and temporal scales of the velocity changing, radius and relative formation heating (buoyancy) are decrease. The velocities values ​​umax and u (Lu), and also height and rise time of the heated formations, on the contrary, are growth with 90 increasing.

    6. Conclusions

    1. The mathematical model depicted altitude and time dependence of the heated gasses main parameters during their convective ascent in the atmospheric air has been developed in the paper. Numerical calculations for different biogas buoyancy ($ 0 «10 3 -10-1) and different sizes of the danger source (with radius R0 10, 100 and 1000m) have been carried out. It has been established that with increasing radius, the maximum height of biogas rise proportionally grows, reaching 1-10 km. The

    maximum rate of biogas rise varies from 0,36-3,6 m / s at 30 = 10 3 up to 3,6-36,1 m / s at 30 = 10 "1. The biogas rise time decreases from 3-24 hours at 50 = 10 3 to 0,3-3 hours at 9a = 10 "1.

    2. It has been shown that during the biogas rise due to the cold air addition the radius of the heated volume increases, the excess temperature in it and buoyancy decrease, and the ascent rate firstly increases and then gradually decreases. The treatment outcomes are of practical importance in the state assessing of atmospheric air in the area affected by the MSW polygons, for efficient monitoring of hazard factors (concentrations, temperatures), making management decisions for conducting emergency rescue operations, and for predicting the consequences of emergency situations exposure on the environment and population.

    References

    1. Arhipova G. I., Galushka Y. O. Impact of household waste dumps on human health // Scientific bulletin NAU. 2009. Issue 3. P. 217-219.

    2. Dmitruk O. O., Dmitruk E. A. Physico-chemical essence of the formation process of landfill gas from municipal solid waste polygon // Digest of scientific works of NGU. 2017. Issue 52. P. 335-341.

    3. Popovich V. V. Fire hazard of spontaneous landfills and municipal solid waste polygons // Fire hazard: digest of scientific works. 2012. Issue 21. P. 140-147.

    4. Analytical report on fire and its impact in Ukraine for 8 months of 2018. Ukrainian Research Institute of Civil Protection, 2018. 18 p.

    5. World Fire Statistics / Brushlinsky N. N. et. al. International Association of Fire and Rescue Service, 2017. 56 p.

    6. Development of mathematical model of biogas formation from municipal solid waste polygons / Shaimova A. M. et. al. // Oil and gas business. 2009. Issue 7. P. 137-140.

    7. Kamalan H., Sabour M., Shariatmad N. A Review on Available Landfill Gas Models // Journal of Environmental Science and Technology. 2011. Vol. 4, Issue 2. P. 79-92. doi: https://doi.org/10.3923/jest.2011.79.92

    8. Figueroa V. K., Cooper C. D., Mackie K. R. Estimating Landfill Greenhouse Gas Emissions from Measured Ambient Methane Concentrations and Dispersion Modeling. Tallahassee: Department of Civil and Environmental Engineering, University of Central Florida, 2010. 17 p.

    9. Bilchedey T. K. Modeling of biogas components transport and dispersion in the ambient air from the municipal solid waste polygons // Bulletin of RUDN. Series: Ecology and life safety. 2011. Issue 1. P. 49-52.

    10. Osipova T. A., Remez N. S. Prediction of biogas output and municipal solid waste polygon temperature on the basis of mathematical modeling // Bulletin of Michael Ostrogradsky KrNU. 2015. Issue 3. P. 144-149.

    11. Gostintsev Yu. A., Shackih Yu. V. On the generation mechanism of long-wave acoustic perturbations in the atmosphere by a pop-up cloud of explosion products // Physics of combustion and explosion. 1987. Issue 2. P. 91-97.

    Дата надходження рукопису 02.08.2018

    Rashkevich Nina, Postgraduate student, National University of Civil Defence of Ukraine. Chernishevska str., 94, Kharkiv, Ukraine, 61023 E-mail: Ця електронна адреса захищена від спам-ботів. Вам потрібно увімкнути JavaScript, щоб побачити її.

    Goncharenko Igor, Applicant, Ukrainian Research Institute of Environmental Problems, Bakulina str., 6, Kharkiv, Ukraine, 61166 E-mail: Ця електронна адреса захищена від спам-ботів. Вам потрібно увімкнути JavaScript, щоб побачити її.

    Anishenko Liudmula, Doctor of Technical Sciences, Ukrainian Research Institute of Environmental Problems, Bakulina str., 6, Kharkiv, Ukraine, 61166 E-mail: Ця електронна адреса захищена від спам-ботів. Вам потрібно увімкнути JavaScript, щоб побачити її.

    Pisnya Leonid, PhD, Ukrainian Research Institute of Environmental Problems, Bakulina str., 6, Kharkiv, Ukraine, 61166

    E-mail: Ця електронна адреса захищена від спам-ботів. Вам потрібно увімкнути JavaScript, щоб побачити її.

    Petrukhin Serhii, PhD, Military Institute of Tank Troops of National Technical University "KhPI", Poltavskyi Shliakh str., 192, Kharkiv, Ukraine, 61000 E-mail: Ця електронна адреса захищена від спам-ботів. Вам потрібно увімкнути JavaScript, щоб побачити її.

    Serikova Elena, Environmental engineer, A. M. Pidhorny Institute for Mechanical Engineering Problems NAS of Ukraine, Pozharskoho str., 2/10, Kharkiv, Ukraine, 61046 E-mail: Ця електронна адреса захищена від спам-ботів. Вам потрібно увімкнути JavaScript, щоб побачити її.


    Ключові слова: БіОГАЗ / математична МОДЕЛЬ / Полігон твердих побутова відходів / НАГРіТі ГАЗОУТВОРЕННЯ / BIOGAS / MATHEMATICAL MODEL / MUNICIPAL SOLID WASTE POLYGON / HEATED GAS FORMATIONS

    Завантажити оригінал статті:

    Завантажити