Epidemiological observations concerning the relationship between water hardness, concentrations of lead (Pb) in drinking water, and cardiovascular mortality in Great Britain and Norway suggest that Pb may have been far more important than hitherto recognized as one of the main causes of the 20th Century coronary heart disease epidemic in the United States and Europe. The aim of this study was a literature review of the association between Pb concentrations in the environment, in blood, and cardiovascular diseases. Materials and Methods. The search for relevant scientific publications was carried out in databases of evidence based medicine (PubMed, Cochrane Library), and specialized search systems (Google Scholar). The following search filters or inclusion criteria were used: environmental studies on Pb sources in the environment, drinking water and food, epidemiological studies on the association between Pb and cardiovascular pathology, on the hardness of drinking water, published in English, full versions of articles. Preference was given to studies of high methodological quality (cohort studies and reviews of studies of various designs), in the absence of which results of cross sectional studies were taken into account. The research was obtained by searching the following keywords: drinking water AND lead; cardiovascular diseases AND lead; mortality AND lead. Results. It was found a correlation between blood Pb concentration and both systolic and diastolic blood pressure, stroke, and heart attacks. The toxic effects of Pb can explain the association between water hardness and cardiovascular mortality.

Анотація наукової статті з наук про Землю і суміжних екологічних наук, автор наукової роботи - Geir Bjorklund


КОНЦЕНТРАЦІЯ СВИНЦЮ В ПИТНОЇ ВОДИ В ЄВРОПІ І СМЕРТНІСТЬ ВІД СЕРЦЕВО-СУДИННИХ ЗАХВОРЮВАНЬ

Епідеміологічні спостереження, що стосуються взаємозв'язків між жорсткістю води, концентраціями свинцю в питну воду (Pb) і смертністю від серцево судинних захворювань у Великобританії і Норвегії, дозволяють припустити, що свинець, можливо, грає набагато важливішу роль у розвитку епідемії ішемічної хвороби серця в США і Європі 20-го століття, ніж це досі визнавалася. Метою даного дослідження був огляд літератури про зв'язок вмісту свинцю в навколишньому середовищі і крові з серцево-судинними захворюваннями. Матеріали та методи. Пошук відповідних наукових публікацій проводився в базах даних доказової медицини (PubMed, CochraneLibrary), спеціалізованих пошукових системах (GoogleScholar). Використовувалися наступні пошукові фільтри або критерії включення: екологічні дослідження джерел свинцю в навколишньому середовищі, питну воду і продуктах харчування, епідеміологічні дослідження взаємозв'язку патології свинцю і серцево судинної системи, жорсткості питної води, опубліковані англійською мовою, повні версії статей. Перевагу було віддано дослідженням високого методологічного якості (когортного дослідження і огляди досліджень різного дизайну), при відсутності яких враховувалися результати поперечних досліджень. Дослідження було отримано шляхом пошуку за ключовими словами: Питна вода і свинець; серцеві хвороби та свинець; смертність і свинець. Результати. Була виявлена ​​кореляція між концентрацією свинцю в крові і систолічним і діастолічним артеріальним тиском, інсультом та інфарктом. Токсичні ефекти Pb можуть пояснити зв'язок між жорсткістю води і серцево судинної смертністю.


Область наук:

  • Науки про Землю та суміжні екологічні науки

  • Рік видавництва: 2019


    Журнал: Наука і охорону здоров'я


    Наукова стаття на тему 'LEAD CONCENTRATIONS IN DRINKING WATER IN EUROPE AND CARDIOVASCULAR MORTALITY'

    Текст наукової роботи на тему «LEAD CONCENTRATIONS IN DRINKING WATER IN EUROPE AND CARDIOVASCULAR MORTALITY»

    ?Received: 27 August 2019 / / Accepted: 25 October 2019 / Published online: 30 December 2019 UDC 616.12-036.88: 613.31

    LEAD CONCENTRATIONS IN DRINKING WATER IN EUROPE AND CARDIOVASCULAR MORTALITY

    Geir Bj0rklund 1 *

    1Council for Nutritional and Environmental Medicine (CONEM), Mo i Rana, Norway.

    Abstract

    Epidemiological observations concerning the relationship between water hardness, concentrations of lead (Pb) in drinking water, and cardiovascular mortality in Great Britain and Norway suggest that Pb may have been far more important than hitherto recognized as one of the main causes of the 20th Century coronary heart disease epidemic in the United States and Europe.

    The aim of this study was a literature review of the association between Pb concentrations in the environment, in blood, and cardiovascular diseases.

    Materials and Methods. The search for relevant scientific publications was carried out in databases of evidence-based medicine (PubMed, Cochrane Library), and specialized search systems (Google Scholar). The following search filters or inclusion criteria were used: environmental studies on Pb sources in the environment, drinking water and food, epidemiological studies on the association between Pb and cardiovascular pathology, on the hardness of drinking water, published in English, full versions of articles . Preference was given to studies of high methodological quality (cohort studies and reviews of studies of various designs), in the absence of which results of cross-sectional studies were taken into account.

    The research was obtained by searching the following keywords: drinking water AND lead; cardiovascular diseases AND lead; mortality AND lead.

    Results. It was found a correlation between blood Pb concentration and both systolic and diastolic blood pressure, stroke, and heart attacks. The toxic effects of Pb can explain the association between water hardness and cardiovascular mortality.

    Key words: drinking water; lead; cardiovascular disease; mortality.

    резюме

    КОНЦЕНТРАЦІЯ СВИНЦЮ В ПИТНОЇ ВОДИ В ЄВРОПІ І СМЕРТНІСТЬ ВІД СЕРЦЕВО-СУДИННИХ ЗАХВОРЮВАНЬ

    Geir Bj0rklund 1 *

    1 Рада з живильним і екологічної медицини (CONEM), м Мо і Рана, Норвегія.

    Епідеміологічні спостереження, що стосуються взаємозв'язків між жорсткістю води, концентраціями свинцю в питній воді (Pb) і смертністю від серцево-судинних захворювань у Великобританії і Норвегії, дозволяють припустити, що свинець, можливо, грає набагато важливішу роль у розвитку епідемії ішемічної хвороби серця в США і Європі 20-го століття, ніж це досі визнавалася.

    Метою даного дослідження був огляд літератури про зв'язок вмісту свинцю в навколишньому середовищі і крові з серцево-судинними захворюваннями.

    Матеріали та методи. Пошук відповідних наукових публікацій проводився в базах даних доказової медицини (PubMed, CochraneLibrary), спеціалізованих пошукових системах (GoogleScholar). Використовувалися наступні пошукові фільтри або критерії включення: екологічні дослідження джерел свинцю в навколишньому середовищі, питну воду та продукти харчування, епідеміологічні дослідження взаємозв'язку патології свинцю і серцево-судинної системи, жорсткості питної води, опубліковані англійською мовою, повні версії статей. Перевагу було віддано дослідженням високого методологічного якості (когортного дослідження і огляди досліджень різного дизайну), при відсутності яких враховувалися результати поперечних досліджень.

    Дослідження було отримано шляхом пошуку за ключовими словами: питна вода і свинець; серцево-судинні захворювання і свинець; смертність і свинець.

    Результати. Була виявлена ​​кореляція між концентрацією свинцю в крові і систолічним і діастолічним артеріальним тиском, інсультом та інфарктом. Токсичні ефекти Pb можуть пояснити зв'язок між жорсткістю води і серцево-судинної смертністю.

    Ключові слова: питна вода; свинець; серцево-судинні захворювання; смертність.

    Тушндеме

    ЕУРОПАДАГИ ауиз СУДАГИ КОРГАСИННИН ШОГИРЛАНУИ ЖЕНЕ журеком-КАН ТАМИРЛАРИ АУРУЛАРИНАН БОЛАТИН 0Л1М-Ж1Т1М

    Ое1г Bj0rklund 5 *

    1 Тагамдик жене екологіялик медицина бойинша Кецес (CONEM), Мо жене Рана до-, Норвегія

    Суди4 катачдиги, ауиз судаги коргасиннищ концентраціяси (Pb) жене? Либрітанія мен Норвегіядаги жYрек-кан тамирлари ауруларинан болатин влiм арасиндаги езара байланистарга катисти епідеміологіялик бакилау коргасин оси ^ нге дейiн танилганга Караганда, А ^ Ш пен 20-ши гасирдищ Еуропада жYректщ ішеміялик ауру iндетiнiі дамуинда анагурлим ма ^ изди РВЛ аткаради деп болжауга мYмкiндiк бередi.

    Зерттеудщ Максат коршаган ортадаги коргасин мен кан кураминищ жYрек-кан тамирлари ауруларимен байланиси турали 8дебіеттердi шолу Болди.

    Матеріалдар мен едютер. Тіiстi гилимі басилимдарди iздестiру д8лелдi медіцінанищ деректер базасинда (PubMed, CochraneLibrary), мамандандирилган iздеу жYЙелерiнде (GoogleScholar) жYргiзiлдi. Келесi iздеу сYзгiлерi Немес косу елшемдерi пайдаланилди: коршаган ортадаги, ауиз судаги жене азик-тYлiк внiмдерiндегi коргасин квздерИщ екологіялик зерттеулерi, коргасин патологіяси мен жYрек-кантамир жYЙесiнщ езара байланисин, ауиз судищ агилшин тiлiнде жаріяланган каттилигин, макалалардищ толик нускаларин епідеміологіялик зерттеу. Артикшилик жогари 8дiснамалик сападаги зерттеулерге (когорттик зерттеулер жене 8ртYрлi дизайн зерттеулерiнiі шолулари) берiлдi, Олар болмаган жавдайда квлденеч зерттеулердщ н8тіжелерi ескерiлдi.

    Зерттеу келесi негiзгi сездердi iздеу аркили алинди: ауиз су ж8не коргасин; жYрек-тамири аурулари ж8не коргасин; влiм ж8не коргасин.

    Нетіжелер. ^ Андаги коргасин концентраціяси мен сістолалик ж8не діастолалик артеріялик кисим, інсульт ж8не інфаркт арасиндаги кореляція аникталди. РЬ уитти 8серлерi судищ катачдиги мен жYрек-тамири влiмiнщ арасиндаги байланисти тYсiндiре Аладов.

    ТYйiндi свздер: ауиз су; коргасин; жYрек-mамир аурулари; влiм.

    Бібліографічна посилання:

    Geir Bj0rklund Концентрація свинцю в питній воді в Європі і смертність від серцево-судинних захворювань // Наука і Охорона здоров'я. 2019. 6 (Т.21). С. 5-10.

    Geir Bj0rklund Lead concentrations in drinking water in Europe and cardiovascular mortality // Nauka i Zdravookhranenie [Science & Healthcare]. 2019, (Vol.21) 6, pp. 5-10.

    Geir Bj0rklund Еуропадаги ауиз судаги коргасинньщ шогирлануи жене жYрек-кан тамирлари ауруларинан болатин влiм-жiтiм // Гилим жене Денсаулищ са ^ тау. 2019. 6 (Т.21). Б. 5-10.

    Introduction

    Water used for irrigation may be a potential source of lead (Pb) to the soil [1-3]. A study of water and crops showed that the concentration of Pb, cadmium (Cd), and other metals in sewage-contaminated water was up to 210 times higher than in shallow handpump water [4]. Since clean water (and soil) is not easily accessible to the population of all countries, assuring safe (uncontaminated) water supplies is a pressing issue of great public health importance. This is demonstrated by an animal study. Shed skins from cobras and wall lizards collected from heavily polluted urban areas frequently contain significantly higher Pb levels than those of the same animals from less polluted rural areas [5].

    Drinking water can be an important source of Pb, partly because of the possibility of much better intestinal absorption than for much of the Pb coming from other foods, with dietary calcium (Ca) and phosphorus (P), and perhaps also other substances in food being important factors that limit the intestinal absorption of Pb [6-13], while Pb from tapwater alone or when used for reconstitution of commercial infant foods can be much better absorbed [14,

    15]. Ingestion of Pb from drinking water used to be a severe problem in many British cities for more than two decades into the post-World War 2 period because of the high prevalence of houses with Pb service pipes, the low pH of the public water supply and the resulting high levels of Pb in water used for public consumption [16, 17].

    The aim of this study was a literature review of the association between Pb content in the environment and blood and cardiovascular diseases.

    Materials and Methods

    The search for relevant scientific publications was carried out in databases of evidence-based medicine (PubMed, Cochrane Library), and specialized search systems (Google Scholar). The following search filters or inclusion criteria were used: environmental studies on Pb sources in the environment, drinking water and food, epidemiological studies on the association between Pb and cardiovascular pathology, on the hardness of drinking water, published in English, full versions of articles . Preference was given to studies of high methodological quality (cohort studies and reviews of studies of various

    designs), in the absence of which results of cross-sectional studies were taken into account.

    The research was obtained by searching the following keywords: drinking water AND lead; cardiovascular diseases AND lead; mortality AND lead.

    A total of 753 literary sources were found, of which 50 articles were selected for subsequent analysis.

    Results and discussion

    An investigation from Ayr City in the southwest of the coast in Scotland illustrates the great importance Pb in drinking water can have for the total Pb burden in human populations [18]. The local water supply was plumbosolvent, and many dwellings in Ayr contained Pb pipes. In 1981, treatment of the water supply to reduce its plumbosolvency was initiated. Measurements of water and blood Pb concentrations were made before and after the treatment [18]. Most of the measurements carried out before and after water treatment began were made on water samples from the same dwellings and blood samples from the same women. Water treatment was fund to produce a sharp fall in water Pb concentrations and a decrease in the median blood Pb concentration from 21 to 13 micrograms / 100 ml [18]. Two women had higher than expected blood Pb levels. Both of these women had been removing old paint. All of the women who had Pb pipes removed from their dwellings showed substantial decreases in their blood Pb concentrations [18].

    The relationship between Pb intake from the diet and drinking water and the Pb concentration in the blood were also studied [19]. A cube root relationship was found to fit the data on blood Pb versus water Pb better than a linear relationship [19]. Similarly, blood Pb was also found to vary with the cube root of weekly dietary Pb intake. These cube root equations provided a means of estimating the impact on blood Pb concentrations of exposure to Pb from food and water. If the cube root relationships did correctly describe the association between these parameters, then the curve fitted to the results for adults indicating that the contribution to the blood Pb concentrations from sources other than the diet and water was relatively small [19]. A similar cube root relationship was also found between drinking water Pb concentration and Pb concentrations in blood from infants. However, the effect of Pb from drinking water on Pb concentrations in blood was found to be considerably smaller among wholly breastfed infants than on the others [20]. The same cube-root relationship has also been found between domestic water Pb concentrations and blood Pb concentrations in 232 mothers at delivery [21].

    A survey of middle-aged men in 24 British towns showed that there was substantial geographical variation in blood Pb concentrations [22]. Cities with the highest mean blood Pb levels had soft water supplies. It was found that raised household tap water Pb concentrations could considerably increase individual blood Pb. Mean blood Pb was estimated to be 43% higher for men when the concentration of Pb in first-draw domestic tap water was 100 micrograms / l compared with a zero level [22]. Individual blood Pb was, however, also found t be affected by alcohol consumption and cigarette smoking, such that on average, these two lifestyle habits together contribute an estimated

    17% to the blood concentration of Pb in middle-aged men [22].

    While Pb pipes were used for drinking water supply by the ancient Romans, and perhaps have been used in several countries during the XIX Century, this practice did at least not continue in other countries for such a long period as it did in Great Britain, although Pb pipes may have survived in many old buildings. However, Pb may still have entered the drinking water from other sources than the pipes themselves, viz. from solder metal (lead-tin alloys) used for joining the pipes and from brass used in water taps that had been alloyed with Pb to improve its technical properties during the process of manufacture [23-28].

    A study of heavy metal concentrations in the drinking water of randomly samples households in Oslo was carried out after Cd poisoning of drinking water had been discovered in a new building for the Institute of Biology at the University of Oslo. Some aquatic organisms that were used in laboratory experiments became poisoned, and when the researchers tried to find out what had happened, it was found that the taps in the new building had been plated with Cd. This alerted the public health authorities and prompted an investigation to try to measure the prevalence of Cd-poisoned drinking water among households in Oslo. This study showed that Cd poisoning of drinking water was rare, while high levels of Pb were very common, though not equally high, as in British cities with plumbosolvent water. One of the most important sources of the drinking water Pb was found to be water taps made from Pb-alloyed brass [29].

    A strong inverse relationship has been found between drinking water hardness (defined as the sum of Ca ++ and Mg ++ concentrations in drinking water) and cardiovascular mortality in British cities [30]. In a study of regional variations in cardiovascular mortality in Great Britain during 1969-73 based on 253 towns, the possible contributions of drinking water quality, climate, air pollution, blood groups, and socioeconomic factors were evaluated [30]. A twofold range in mortality from stroke and ischaemic heart disease was apparent, with the highest mortality being in the west of Scotland and the lowest in South East England [30]. A multifactorial approach was found to identify five principal factors that substantially explained this geographic variation in cardiovascular mortality-namely, water hardness, rainfall, temperature, and two social factors (percentage of manual workers and car ownership). After adjustment for other factors cardiovascular mortality in areas with very soft water, around 0.25 mmol / l (CaCO3 equivalent 25 mg / l), was estimated to be 10-15% higher than that in areas with medium-hard water, around 1.7 mmol / l (170 mg / l), while any further increase in hardness beyond 1.7 mmol / l did not additionally lower cardiovascular mortality [30]. Thus, a negative relationship existed between water hardness and cardiovascular mortality, although climate and socioeconomic conditions also appeared to be important influences.

    Later, the association between blood Pb concentration, blood pressure, stroke, and heart attacks in middle-aged British men was similarly studied [31]. The relationship between blood Pb concentration and blood pressure was examined in a survey of 7371 men aged 40 to 59 from 24 British towns. It was found that after allowance for relevant

    confounding variables, including the city of residence and alcohol consumption, there existed a very weak but statistically significant positive association between blood Pb and both systolic and diastolic blood pressure. These cross-sectional data indicated that an estimated mean increase of 1.45 mm Hg in systolic blood pressure occurs for every doubling of blood Pb concentration with a 95% confidence interval of 0.47 to 2.43 mm Hg. After six years of follow-up, 316 of these men had major ischemic heart disease, and 66 had a stroke. After allowance for the confounding effects of cigarette smoking and town of residence, there was no evidence that blood Pb is a risk factor for these cardiovascular events. However, as the blood Pb-blood pressure association was so weak, it was considered unlikely that any consequent association between Pb and cardiovascular disease could be demonstrated from prospective epidemiological studies [31].

    In some studies, it was found that the level of lead in bone tissue is a more accurate biomarker of its cumulative effect than Pb concentration in the blood. So, in a sample of 868 men, a correlation between the lead content in the patella, all-cause mortality, and cardiovascular mortality was found. The adjusted relative risks were 2.52 (DI 95%, 1.17-5.41) and 5.63 (DI 95%, 1.73-18.3), respectively. Approximately the same results were found when analyzing the content of lead in the tibia [32].

    A criticism that can be raised against both of these studies, not against the statistical data that has been used, but against their interpretation, is that it is a wholly open question if the correlations observed between climatic factors (rainfall and temperature) and cardiovascular mortality in a medical sense are causal ones, or if they just might be confounding factors that erroneously have been interpreted as being causal because there is a strong correlation between climate and topography and drinking water corrosive properties, in addition to the obvious effect of bedrock composition on the composition of drinking water.

    However, bedrock composition on the British Isles is also strongly correlated with climate, going from the Southeast of England to the North of Scotland, since limestones are much more abundant in South East England than in Scotland [33]. Most of Scotland belongs in a geological sense to the Caledonides, which are also found on the west side of the Scandinavian Peninsula and the east coast of Greenland, and the bedrock composition in Scotland is entirely dominated by silicate rocks, both metamorphic and igneous ones. In Scotland, moreover, the combination of climate, bedrock composition, and topography is also favorable to vegetation types (including mountain bogs and heather-covered terrain), giving acid soils with high concentrations of organic matter, similarly as on the west coast and most of the northern part of Norway. The average contribution of surface runoff, compared to groundwater discharge, into brooks, rivers, and lakes are also high in much of Scotland because of the combination of topography and climate. This, however, does not mean that the climate today determines what type of sediments were deposited either in what is now Norway or in what is now Scotland more than 65 million years ago or what happened during the Caledonian orogeny much earlier. Nor

    does it mean that the bedrock composition has any effect on climate either on the British Isles or in Norway today except an indirect one (which, however, is quite large) because of its effect on local topography [34].

    It is thus possible that the real (casual) contribution to cardiovascular death rates in the study of Pocock et al. from 1980 may have been much more than 10-15% variation if one corrects for over-correction of the data by falsely assuming confounding factors to be causal.

    A similar inverse relationship, but much weaker than in Great Britain, between drinking water hardness and cardiac mortality, has also been observed in other countries, including the United States [35-38]. It has very commonly been speculated that it might be the magnesium (Mg) content of hard drinking water that might be the causal factor explaining this statistical relationship since it has been well-known for several years that Mg deficiency is harmful to the heart. Prompted by these speculations, a study was carried out in Norway among municipalities with different total drinking water hardness and different Ca / Mg ratios in the drinking water. This study has not been published, but the main results are quoted in a survey report for the Norwegian National Nutrition Council [39]. The local communities that were studied were all from the same part of Norway without any large differences in the local climate.

    Unexpectedly, no correlation between drinking water Mg concentrations and cardiac mortality was found. However, a statistically significant 10% difference in age-adjusted cardiac mortality was found, comparing the municipalities with the highest and lowest drinking water Ca concentrations. Still, even in the municipalities with highest Ca levels in the drinking water, the contribution from drinking water to the total dietary Ca intake much too small, compared to the Ca intake from other foods, that drinking water Ca per se be the cardioprotective factor. A so-called technical effect of drinking water Ca, e.g., on the rate of Pb corrosion from Pb-Sn alloys used as solder metal or from Pb-containing brass used in the water taps, was the only possible explanation [40-43].

    These data from Norway are entirely consistent with the observations from England and Scotland, except that drinking water Pb concentrations must have been lower in the low-Ca communities in Norway than in the low-Ca communities in Great Britain, and the difference in cardiovascular death rates without correction for other factors were also considerably less in Norway (10% variation in Norway against variation by up to a factor of 2/1 in England and Scotland) [44].

    The most important technical factor in Norway is most likely a difference in the corrosiveness of the water, which might depend not so much on the Ca ++ concentration of the water per se as on its pH value. The British, however, are large consumers of tea, and most of the water that is consumed for drinking in Great Britain is boiled before it is ingested. It is then conceivable (although this hypothesis has not been experimentally tested) that when water from a limestone area in the Southeast of England is boiled, CaCO3 will precipitate in the kettle during boiling, and Pb ++ will be coprecipitated together with CaCO3 because the difference in ionic radius between Ca ++ (0.99 A) and Pb ++ (1.20 A) is not so large that it would be expected entirely to

    hinder coprecipitation, and the solubility product of PbCO3 (8.0 x 10-14) is much smaller than that of CaCOs (4.5 x 10-9) [45].

    It is thus possible that the toxic effects of Pb may entirely explain the observed association between water hardness and cardiovascular mortality on the British Isles, perhaps both on the process of atheromatous development, on the regulation of vascular tone in the coronary vessels, on the balance between antithrombotic and prothrombotic signal substances released from endothelial cells and directly on the cardiomyocytes [46, 47]. The influence of environmental Pb can damage mitochondrial activity leading to impaired cardiovascular function [48-50].

    Conclusion

    The results of large epidemiologic and experimental studies show a relation between the low hardness of drinking water due to deficiency of Ca and Mg concentration, long term Pb influence, and increase of cardiovascular mortality rates. Evaluation of chronic Pb exposure regarding circulatory system diseases needs further research. Also, this problem could be solved by developing prevention programs that include the elimination of lead from drinking water and food.

    References:

    1. Kumar Sharma R., Agrawal M., Marshall F. Heavy metal contamination of soil and vegetables in suburban areas of Varanasi, India // Ecotoxicol Environ Saf. 2007. №66. P.258-266.

    2. Tiwari K.K., Singh N.K., Patel M.P., Tiwari M.R., Rai U.N. Metal contamination of soil and translocation in vegetables growing under industrial wastewater irrigated agricultural field of Vadodara, Gujarat, India // Ecotoxicol Environ Saf. 2011. №74. P. 1670-1677.

    3. Ghosh A.K., Bhatt M.A., Agrawal H.P. Effect of long-term application of treated sewage water on heavy metal accumulation in vegetables grown in northern India. Environ Monit Assess. 2012. № 184. P. 1025-1036.

    4. Dheri G.S., Brar M.S., Malhi S.S. Heavy-metal concentration of sewage-contaminated water and its impact on underground water, soil and crop plants in alluvial soils of Northwestern India // Comm Soil Sci Plant Analysis. 2007. № 38. P. 1353-1370.

    5. Kaur S. Lead in the scales of cobras and wall lizards from rural and urban areas of Punjab, India. Sci Total Environ. 1988. №77. P. 289-290.

    6. Tutic A., Novakovic S., Lutovac M., Biocanin R., Ketin S., Omerovic N. The heavy metals in agrosystems and impact on health and quality of life // Open Access Maced J Med Sci. 2015. № 3. P.345-355.

    7. Underwood E. Trace Elements in Human Health and Disease. 4. Ed. New York: Academic Press, 1977.

    8. Quaterman J. Lead. In: Mertz W (Ed.). Trace elements in human and animal nutrition. Vol 2, 5th edn. Orlando: Academic Press 1986; pp. 281-318.

    9. Fullmer C.S. Intestinal calcium and lead absorption: effects of dietary lead and calcium // Environ Res. 1991. № 54. P.159-169.

    10. Bogden J.D., Gertner S.B., Christakos S., Kemp F.W., Yang Z., Katz S.R., Chu C. Dietary calcium modifies

    concentrations of lead and other metals and renal calbindin in rats. J Nutr. 1992. №122. P. 1351-1360.

    11. Bogden JD, Kemp FW, Han S., Murphy M., Fraiman M., Czerniach D., Flynn CJ, Banua ML, Scimone A., Castrovilly L. Dietary calcium and lead interact to modify maternal blood pressure, erythropoiesis, and fetal and neonatal growth in rats during pregnancy and lactation // J Nutr. 1995. №125. P. 990-1002.

    12. Yannai S., Sachs K.M. Absorption and accumulation of cadmium, lead and mercury from foods by rats // Food Chem Toxicol. 1993. №31. P.351-355.

    13. Ragan H.A. The bioavailability of iron, lead and cadmium via gastrointestinal absorption: a review // Sci Total Environ. 1998. № 28. P. 317-326.

    14. Shannon M., Graef J.W. Lead intoxication from lead-contaminated water used to reconstitute infant formula // Clin Pediatr (Phila). 1989. №28. P.380-382.

    15. Schumann K. [The toxicological estimation of the heavy metal content (Cd, Hg, Pb) in food for infants and small children]. [Article in German] Z Ernahrungswiss. 1990. № 29. P.54-73.

    16. Watt G.C., Britton A., Gilmour W.H., Moore M.R., Murray G.D., Robertson S.J., Womersley J. Is lead in tap water still a public health problem? An observational study in Glasgow // BMJ. 1996. № 313. P.979-981.

    17. Watt G.C., Britton A., Gilmour H.G., Moore M.R., Murray G.D., Robertson S.J. Public health implications of new guidelines for lead in drinking water: a case study in an area with historically high water lead levels // Food Chem Toxicol. 2000. № 38 (1 Suppl). P. S73-79.

    18. Sherlock J.C., Ashby D., Delves H.T., Forbes G.I., Moore M.R., Patterson W.J, Pocock S.J., Quinn M.J., Richards W.N., Wilson T.S. Reduction in exposure to lead from drinking water and its effect on blood lead concentrations // Hum Toxicol. 1984. № 3. P.383-392.

    19. Sherlock J., Smart G., Forbes G.I., Moore M.R., Patterson W.J., Richards W.N., Wilson T.S. Assessment of lead intakes and dose-response for a population in Ayr exposed to a plumbosolvent water supply // Hum Toxicol. 1982. №1. P.115-122.

    20. Sherlock J.C., Quinn M.J. Relationship between blood lead concentrations and dietary lead intake in infants: the Glasgow Duplicate Diet Study 1979-1980 // Food Addit Contam. 1986. № 3. P.167-176.

    21. Moore M.R., Goldberg A., Meredith P.A., Lees R., Low R.A., Pocock S.J. The contribution of drinking water lead to maternal blood lead concentrations // Clin Chim Acta. 1979. № 95. P. 129-133.

    22. Pocock SJ, Shaper AG, Walker M., Wale CJ, Clayton B., Delves T., Lacey RF, Packham RF, Powell P. Effects of tap water lead, water hardness, alcohol, and cigarettes on blood lead concentrations / / J Epidemiol Community Health. 1983. №37. P. 1-7.

    23. Van Derslice J., Briscoe J. Environmental interventions in developing countries: interactions and their implications // American Journal of Epidemiology. 1995. №141 (2). P. 135-144.

    24. Esrey S.A. Water, waste, and well-being: A multicountry study // American Journal of Epidemiology. 1996. № 143 (6). P. 608-623.

    25. Van Leeuwen F.X.R. Safe drinking water: The toxicologist's approach // Food and Chemical Toxicology. 2000. № 38 (1). S51-S58.

    26. Charrois J.W.A. Private drinking water supplies: Challenges for public health // Canadian Medical Association Journal. 2010. № 182 (10). P.1061-1064.

    27. Gonzalez S., Lopez-Roldan R., Cortina J.L. Presence of metals in drinking water distribution networks due to pipe material leaching: A review // Toxicological and Environmental Chemistry. 2013. № 95 (6). 870-889.

    28. Paranthaman K., Harrison H. Drinking water incidents due to chemical contamination in England and Wales, 2006-2008 // Journal of Water and Health. 2010. №8 (4). P.735-740.

    29. Jarup L., Berglund M., Elinder C.G., Nordberg G., Vahter M. Health effects of cadmium exposure - a review of the literature and a risk estimate // Scand J Work Environ Health. 1998. № 24 (Suppl 1). P. 1-51.

    30. Pocock S.J., Shaper A.G., Cook D.G., Packham R.F., Lacey R.F., Powell P., Russell P.F. British Regional Heart Study: geographic variations in cardiovascular mortality, and the role of water quality // Br Med J. 1980. № 280. P.1243-1249.

    31. Pocock S.J., Shaper A.G., Ashby D., Delves H.T., Clayton B.E. The relationship between blood lead, blood pressure, stroke, and heart attacks in middle-aged British men // Environ Health Perspect. 1988. №78. P. 23-30.

    32. Weisskopf M.G., Jain N., Nie H. A prospective study of bone lead concentration and death from all causes, cardiovascular diseases, and cancer in the Department of Veterans Affairs Normative Aging Study // Circulation. 2009. № 120. P. 1056-1064.

    33. Stephens D., Diesing M. Towards Quantitative Spatial Models of Seabed Sediment Composition // PLoS One. 2015. № 10 (11). e0142502.

    34. Mellett C.L., Hodgson D., Plater A., ​​Mau B., Selby I., Lang A. Denudation of the continental shelf between Britain and France at the glacial-interglacial timescale // Geomorphology (Amst). 2013. № 203. P. 79-96.

    35. Skoczynska A., Gruber K., Belowska-Bien K., Mlynek V. Risk of cardiovascular diseases in lead-exposed workers of crystal glassworks. Part I. Effect of lead on blood pressure and lipid metabolism (in Polish) // Med Pr. 2007. № 58. P. 475-483.

    36. Apostoli P., Corulli A., Metra M., Dei Cas L. Lead and cardiopathy // Med Lav. 2004. № 95. P.124-132.

    37. Navas-Acien A., Guallar E., Silbergeld E.K., Rothenberg S.J. Lead exposure and cardiovascular disease-a systematic review // Environ Health Perspect. 2007. № 115. P.472-482.

    38. Por ^ ba R., Gac P., Por§ba M., Andrzejak R. Environmental and occupational exposure to lead as a potential risk factor for cardiovascular disease // Environ Toxicol Pharmacol. 2001. № 31. P. 267-277.

    39. Christophersen O.A. Sporelementer i norsk kosthold og deres helsemessige betydning. Utredning. [Trace

    elements in the Norwegian diet and their importance for health] [Book in Norwegian language written for the Norwegian National Nutrition Council], Oslo: Statens Ern ^ ringsrad [Norwegian National Nutrition Council] 1983. 121 pages.

    40. Lei Jiang, Pengcheng He, Jiyan Chen, Yong Liu, Dehui Liu, Genggeng Qin, Ning TanMagnesium Levels in Drinking Water and Coronary Heart Disease Mortality Risk: A Meta-Analysis Nutrients. 2016. № 8 (1). Published online 2016 Jan 2.

    41. Rapant S., Cveckova V., Fajcikova K., Sedlakova D., Stehlikova B. Impact of Calcium and Magnesium in Groundwater and Drinking Water on the Health of Inhabitants of the Slovak Republic // Int J Environ Res Public Health. 2017. № 14 (3). P. 278.

    42. Maheswaran R., Morris S., Falconer S., Grossinho A., Perry I., Wakefield J., Elliott P. Magnesium in drinking water supplies and mortality from acute myocardial infarction in north west // England Heart. 1999. № 82 (4). P. 455-460.

    43. Leurs L., Schouten L.J., Mons M.N., Goldbohm R. A., Piet A. van den Brandt. Relationship between Tap Water Hardness, Magnesium, and Calcium Concentration and Mortalitydue to Ischemic Heart Disease or Stroke in the Netherlands // Environ Health Perspect. 2010. № 118 (3). P. 414-420.

    44. Nerbrand C., Agreus L., Arvidsson Lenner., Nyberg P., Svardsudd K. The influence of calcium and magnesium in drinking water and diet on cardiovascular risk factors in individuals living in hard and soft water areas with differences in cardiovascular mortality // BMC Public Health. 2003. № 3. P. 21. Published online 2003 Jun 18.

    45. Krauskopf K.B. Introduction to Geochemistry. 2nd Edition. Singapore: McGraw-Hill Book Company 1982.

    46. ​​Menke A., Muntner P., Batuman V., Silbergeld E.K., Guallar E. Blood lead below 0.48 micromol / L (10 microg / dL) and mortality among US adults // Circulation. 2006. № 114. P.1388-1394.

    47. Nawrot T.S., Staessen J.A. Low-level environmental exposure to lead unmasked as silent killer // Circulation. 2006. №114. P.1347-1349.

    48. Nawrot T.S., Thijs L., Den Hond E.M., Roels H.A., Staessen J.A. An epidemiological re-appraisal of the association between blood pressure and blood lead: a meta-analysis // J Hum Hypertens. 2002. № 16. P.123-131.

    49. Sun Y., Zhang H., Xing X., Zhao Z., He J., Li J., Chen J., Wang M., He Y. Lead promotes abnormal angiogenesis induced by CCM3 gene defects via mitochondrial pathway / / J Dev Orig Health Dis. 2017. № 9. P.182-190.

    50. Feng L., Yang X., Asweto CO, Wu J., Zhang Y., Hu H., Shi Y., Duan J., Sun Z. Low-dose combined exposure of nanoparticles and heavy metal compared with PM ( 2.5) in human myocardial AC16 cells // Environ Sci Pollut Res Int. 2017. № 24. P. 27767-27777.

    Corresponding authors:

    Geir Bj0rklund - Council for Nutritional and Environmental Medicine Toften 24, 8610 Mo i Rana, Norway E-mail: Ця електронна адреса захищена від спам-ботів. Вам потрібно увімкнути JavaScript, щоб побачити її.


    Ключові слова: DRINKING WATER /LEAD /CARDIOVASCULAR DISEASE /MORTALITY /ПИТНА ВОДА /СВИНЕЦЬ /СЕРЦЕВО-СУДИННІ ЗАХВОРЮВАННЯ /СМЕРТНІСТЬ /ауиз СУ /?ЗР? АСИН /Ж? РЕК-тамири АУРУЛАРИ /?ЛІМ

    Завантажити оригінал статті:

    Завантажити