By modifying the equation of Kepler from the orbital motions of the planets, equations of dependence of rotational and orbital motions of planets are given, their rotation angles are calculated. Wave principles of direct and reverse rotation of planets are established. The established dependencies are demonstrated at different scale levels of structural interactions, in biosystems as well. Equality of the Sun and Earth's rotation angles through the resonance of the wave-mechanism determines the possibility of terrestrial photosynthesis. The accuracy of calculations corresponds to the accuracy of experimental data.

Анотація наукової статті з фізики, автор наукової роботи - Korablev G.A.


Про закономірності руху планет

Модифікуючи рівняння Кеплера по орбітальним рухам планет дані рівняння залежності обертального і орбітального рухів планет, розраховані кути їх обертання. Встановлено хвильові принципи прямого і зворотного обертання планет. Встановлені залежності проявляються на різних масштабних рівнях структурних взаємодій, в тому числі в биосистемах. рівність кутів обертання Сонця і Землі через резонанс корпускулярно-хвильового механізму визначає можливість земного фотосинтезу. Точність розрахунків відповідає точності експериментальних даних.


Область наук:
  • фізика
  • Рік видавництва діє до: 2017
    Журнал: Міжнародний науково-дослідний журнал

    Наукова стаття на тему 'ABOUT THE LAWS OF MOVEMENT OF PLANETS'

    Текст наукової роботи на тему «ABOUT THE LAWS OF MOVEMENT OF PLANETS»

    ?Фізико-математичні науки / PHYSICS AND MATHEMATICS

    DOI: https://doi.org/10.23670/IRJ.2017.57.145 Корабльов Г.А.

    Доктор хімічних наук, професор, Іжевська державна сільськогосподарська академія, Про закономірності руху планет

    анотація

    Модифікуючи рівняння Кеплера по орбітальним рухам планет дані рівняння залежності обертального і орбітального рухів планет, розраховані кути їх обертання. Встановлено хвильові принципи прямого і зворотного обертання планет. Встановлені залежності проявляються на різних масштабних рівнях структурних взаємодій, в тому числі в биосистемах. Рівність кутів обертання Сонця і Землі через резонанс корпускулярно-хвильового механізму визначає можливість земного фотосинтезу. Точність розрахунків відповідає точності експериментальних даних.

    Ключові слова: орбітальний і обертальний руху планет, пряме і зворотне обертання планет, кути обертання, фотосинтез.

    Korablev G.A.

    PhD in Chemistry, professor, Izhevsk State Agricultural Academy ABOUT THE LAWS OF MOVEMENT OF PLANETS

    Abstract

    By modifying the equation of Kepler from the orbital motions of the planets, equations of dependence of rotational and orbital motions of planets are given, their rotation angles are calculated. Wave principles of direct and reverse rotation of planets are established. The established dependencies are demonstrated at different scale levels of structural interactions, in biosystems as well. Equality of the Sun and Earth's rotation angles through the resonance of the wave-mechanism determines the possibility of terrestrial photosynthesis. The accuracy of calculations corresponds to the accuracy of experimental data.

    Keywords: orbital and rotational motion of planets, direct and reverse rotation of planets, rotation angles, photosynthesis.

    Introduction

    The world around us is in constant motion. Functionally interconnected main types of mechanical motion (translational, rotational and oscillatory) determine the dynamic stability of systems. Vast theoretical and experimental experience in physical and mathematical properties of simple and complex compounds and principles of their self-organization at different scale levels of such conformation has been gained till now.

    But the problem of establishing the most general regularities of these processes is topical. "However the science is still far from making it happen in the general form" [1]. Thus, applying the entire set of analytical and qualitative methods, the celestial mechanics provides the solution for many problems on the motion of solids, for example [2], [3]. But some other issues of celestial mechanics require further discussion, for instance, the functional dependence of rotational and orbital motion of planets, as well as the initial principles of forming the direct and reverse motion of planets. Therefore in this paper we attempt to investigate such problematic issues with the help of conception of corpuscular-wave dualism proposed earlier [4].

    1. Initial criteria

    (Based on paper [4])

    1. In the systems in which the interaction proceeds along the potential gradient (positive work), the resultant potential energy is found based on the principle of adding reciprocals of corresponding energies of subsystems. Similarly, the reduced mass for the relative motion of the isolated systems of two particles is calculated.

    2. In the systems in which the interactions proceed against the potential gradient (negative performance) the algebraic addition of their masses, as well as the corresponding energies of subsystems is performed (similar to Hamiltonian).

    3. Two principles of adding energy characteristics of structural interactions can be transformed onto the corpuscular-wave dualism processes.

    Corpuscular processes flow in all interactions along the potential gradient, and wave dualism corresponds to the interactions against the potential gradient.

    4. Act of quantum action expressed via Plank's constant is narrowed to the energy equilibrium-exchange redistribution between the corpuscular and wave processes.

    5. Phase difference of electric and magnetic oscillations in electromagnetic wave is j. Applying (|) as the proportionality coefficient, we have the equation for Plank's constant with the accuracy close to the accuracy of the initial data:

    h = aoj Pe j ,

    where a0 = 0.0023293 - experimental quantum correction to spin gs - factor, e - electric constant, f - magnetic constant. Here: Pe = wr, where w - energy of a free electron, r - its classic radius.

    6. It is assumed that during the rotational-translation motion of an electron, the energies are redistributed in the system "particle-wave" that is demonstrated via the angular vector of such motion (winding angle) - Q.

    This angular vector of electron motion is quantized by an integer number through the tangent square of this angle: tg2yz = 2; tg260 ° = 3; tg245 ° = 1, where = 54.730 - a so-called "geodesic angle", which is widely spread in engineering, for example, in spaceship production.

    The quantum functions of square tangent k = 1, 2, 3 numerically determine the ratios of two triangle legs, whose values ​​characterize energy dependencies via axial and circumferential stresses in the system with corpuscular and wave processes.

    7. In quantum mechanics the ratio between the particle magnetic moment and its mechanical moment is the magnetomechanic ratio - g. At the same time, gs = 2, if the electron magnetic moment is conditioned only by the spin component and g = 1, if it is produced by the electron orbital motion. Their ratio gs / g = 2 that, the same way as tg2yz = 2, characterizes the corresponding corpuscular-wave dependencies in this approach.

    2. Equation of dependence of rotational and orbital motion of planets

    The foregoing principles of corpuscular-wave mechanism give the possibility to consider from the unified positions many structural and dynamic processes, different in nature and scale. For example, the characteristic of spin-orbital interaction - fine structure constant a = where r - electron classic radius, 1 - its Compton wavelength.

    A

    Formally, but similarly: interaction force of two long conductors with the current proportionally to the ratio -, where l -length of conductors, r - distance between them.

    And the number 2n widely used in physical regularities, equals the circumference ratio to its radius: 2n = l / R.

    In these examples, as in many other, this approach allows evaluating structural interactions based on the ratios of corpuscular and wave spatial-energy parameters in each action. Obviously, such principles are also demonstrated in Kepler's third law, which can be given as follows [3]:

    a3

    (1)

    where: G - gravitational constant, m - planet mass, here a - distance to barycenter (system mass center), T - planet revolution period. Entering the relative mass m 0 = (where m3 - Earth mass), we can have:

    therefore - = const

    Gm = An2

    T

    Gm3

    47Г2

    T2 m0

    Or:

    T2 m0

    - = const

    (2)

    (T2) 3m03

    Since the masses of planets are rather small in comparison with their distance to the sun, then at the first approximation they can be considered as mathematical points and the equation of mathematical pendulum period can be applied to them:

    -2 _

    4тг2-

    e

    where g - free fall acceleration. The average radius of the planet orbital motion - R can be taken as the pendulum length -l. Then, similarly to the foregoing dependencies, we can introduce the planet radius r into the numerator of formula (2) and then we have:

    r

    -T = Y (3)

    47TZ "\ 3

    Rm.n

    This expression in the units

    2, satisfies the principle of corpuscular-wave mechanism for space macrostructures. But in

    sec 13

    Kepler's third law only the orbital motion was considered, but in this case - two motions, each of which has its own wave part. Therefore, the interference of coherent waves occurs.

    Similar to the foregoing examples, the coherence can be considered as the ratio of the difference of the travel path to the

    length of the coherent wave (jJ. The interference principle is most easily performed for liquid-gaseous planets (planets in Jupiter system) as shown in Table 1:

    Table 1 - Characteristics of rotational and orbital motion of planets

    Planet r-10 (, m R-10s, m m sec Л Direction of rotation Calculation formula for P п D ™ sec Л Рп 03i є3: Q1 [3, 5. 6]

    Mercury 2.4397 57.9 1039.7 + У У 71 - 2 2 735.2 0.9735 86.6 87.0

    Venus 6.0515 108.2 855.17 - 1 740.6 0.9810 87.2 87.0

    Earth 6.3780 149.6 755.2 + 2?, 1 755.2 1 66.56 66.556

    Mars 3.3970 227.9 734.7 + 2 пЧгГ- 2 1 734.7 0.9728 64.75 64.8

    Jupiter 71.492 778.6 715.8 + У 2п-2 1 715.8 0.947812 86.6 86.9

    Saturn 60.268 1433.7 735.9 + У 2п-2 1 735.9 0.9744 64.85 64.3

    Uranus 25.596 2870.4 463.6 - (2п + 1) У-1 696.8 0.9227 82.07 82.0

    Neptune 24.764 4491.1 365.49 + У 2 п-2 2 730.98 0.96793- 62.5 61.68

    Pluto 1.1510 5868.9 295.55 - (2п + 1) У-2 738.75 0.9782

    ф>= 732.5

    /? + = 2 n ^ (4)

    - boosting of oscillations during the direct rotation of planets.

    / L = (2 n + 1 (5)

    - damping of oscillations during the reverse rotation of planets. Here n - integer number.

    The intensity of wave propagation depends on the medium density and its distribution in the planet volume. The value characterizing the planet density increase towards its center is called "dimensionless moment of inertia" (I *). The ratio of average values ​​of I * for solid and liquid-gaseous planets based on different data [3], [5], [6] is within 1.4 - 1.45 as demonstrated in Table 2.

    Table 2 - Ratio of dimensionless moments of inertia of solid and liquid-gaseous planets [3], [5]

    Planet Mercury Venus Earth Mars <I * s>

    T * 1 S 0.324 0.333 0.33076 0.377 0.341

    Planet Jupiter Saturn Uranus Neptune <I * LG>

    1 * lg 0.20 0.22 0.23 0.29 0.235

    --S-S--

    Note: The average value I S / I LG = 1.451.

    Such property for solid planets is taken into account in Table 1 and equations (4, 5) by introducing the values ​​and (2 n + 1) Such approach also refers to Mercury as it is the nearest to the sun, to its liquid-gaseous structure.

    In general, the application of corpuscular-wave mechanism to space macrosystems explains the specifics of formation of direct or reverse rotation of the planets.

    3. Rotation angles of planets

    In physical sense, the parameter ft characterizes the motion difference of interfering waves, and y - wavelength. The average value of ft = 732.5 m / sec23 with the deviation of most of the planets under 2% (apart from Uranus).

    The equation tg2 Q = k was used to evaluate quantum transitions in atoms in [4]. The squares and cubes of initial parameters are applied in Kepler's equation and other regularities of space macrosystems. In this approach, as the calculatio ns demonstrated, the semi-empirical equation is performed:

    /? = (Tflf 20) 3 (6)

    where Q - rotation angle of planets.

    For Earth ft = 755.2 and based on equation (6) Q0 = 66.455 °. For more accurate calculation, taking into account some analogy of macro- and microprocesses, we use, as before, the experimental quantum correction in the form of a0 = 1.0023293 following the equation:

    0i = a o 0o (7)

    The calculation by equations for Earth (6,7) gives the value 66.560 ° with the deviation from the experimental value by 0.007%. The sun has the same value of the rotation angle. This is determined by the process of the earth's photosynthesis.

    As applicable to the rest of the planets, the value S = -j-, (where ft0 - ft value for Earth) is introduced in equation (7) based

    Po

    on the following equations:

    01 = a oS 00 or 01 = a o? © o (8) (8a)

    02 = ^ aoS 0o or 02 = ^ 0 ^ 00 (9) (9a)

    The formulas (8 and 8a) are performed for the planets, whose rotation angle is less than Earth's one. For the other planets the formulas (9 and 9a) are performed. Those are the planets, which are in the beginning of the planet subsystem by the value of the dimensionless moment of inertia (Mercury and Jupiter), as well as the planets with the reverse rotation (Venus and Uranus). The calculation results are given in Table 1.

    4

    The coefficient - has been applied before for the comparative evaluation of quantum transitions with different complexity types [4]. In this research the average ratio of the angles by the experimental data [3], [5], [6] given in Table 3 also has the

    4

    value 1.336 ~ - .

    Table 3 - Ratio of rotation angles of planets by [3], [5], [6]

    Planet Mercury Venus Earth Mars <02>

    02 87.00 87.00 86.90 82.00 85.73

    Planet Jupiter Saturn Uranus Neptune <0i>

    0i 66.556 64.80 64.30 61.00 64.16

    4

    Note: The average value 82 / © i = 1.336 ~ -

    For the value the influence of the medium density distribution is taken into account via the transition factor from one distribution level to another. Since for Jupiter in Table 2 the value I * is less in comparison with Earth's I * in 1.45 times, therefore, in the calculations S = 0.947812. On the contrary with Jupiter, for Neptune I * increases in 1.45 times, therefore, in the calculations S = 0.967932.

    All the calculation results are in good accord with the experimental data.

    Список літератури / References

    1. Ерден-Груз Т. Основи будови матерії / Т. Ерден-Груз // М .: Мир, 1976. - 438 с.

    2. Дубошин Георгій Миколайович Г.Н. Небесна механіка / Г.Н. Дубошин Георгій Миколайович // М .: Наука, 1978. - 456 с.

    3. Пантелєєв В.Л. Фізика Землі і планет. Курс лекцій / В.Л. Пантелєєв // МГУ. Москва, 2001.

    4. G.A. Korablev. Spatial-energy parameter and its application in research. LAP LAMBERT Academic Publishing. Germany. Рр. 1-65.

    5. Фізична енциклопедія. М .: «Радянська енциклопедія». Т.1, 1988. - 704 с .; Т.2, 1990. - 704 с .; Т.3, М .: «Велика Російська енциклопедія». 1992. - 672 с.

    6. Аллен К.У. Астрофізичні величини / К.У. Аллен // М .: Изд. «МИР», 1977. - 446 с.

    Список літератури англійською мовою / References in English

    1. Jerden-Gruz T. Osnovy stroenija materii [Basics of matter composition] / Т. Jerden-Gruz // М .: Mir, 1976. - 438 p. [In Russian]

    2. Duboshin G.N. Nebesnaja mehanika [Celestial mechanics] / G.N. Duboshin // М.: Nauka, 1978. - 456 p. [In Russian]

    3. Panteleev V.L. Fizika Zemli i planet. Kurs lekcij [Physics of Earth and planets. Lectures] / V.L. Panteleev // MGU. Moskva [MSU. Moscow], 2001. http://www.astronet.org.ua/db/msg/1169697/node17.html [in Russian]

    4. G.A. Korablev. Spatial-energy parameter and its application in research. LAP LAMBERT Academic Publishing. Germany. Рр. 1-65.

    5. Fizicheskaja jenciklopedija [Encyclopedia in physics]. M .: «Sovetskaja jenciklopedija» [ "Sovetskaya enciklopedia"]. V.1, 1988. - 704 p .; V.2, 1990. - 704 p .; V.3, M .: «Bol'shaja Rossijskaja jenciklopedija» [ "Bolshaja Rossijskaja enciklopedia"]. 1992. - 672 p. [In Russian]

    6. Allen K.U. Astrofizicheskie velichiny [Astrophysical magnitudes] / K.U. Allen // M .: Izd. «MIR» [М .: МП], 1977. -446 p. [In Russian]

    DOI: https://doi.org/10.23670/IRJ.2017.57.105 Корабльов Г.А.

    Доктор хімічних наук, професор, Іжевська державна сільськогосподарська академія, Корпускулярно-ХВИЛЬОВІ ПРОЦЕСИ

    анотація

    Два принципу складання енергетичних характеристик структурних взаємодій виконуються, якщо процес йде або по градієнту потенціалу або проти нього. Трансформуючи ці правила на корпускулярно-хвиль дуалізм можна припустити, що корпускулярні взаємодії мають місце по градієнту потенціалу (принцип складання зворотних величин енергій), а хвильові процеси йдуть проти градієнта потенціалу (принцип алгебраїчного додавання енергій). Такий підхід підтверджується емпіричним рівнянням, в якому акт квантового дії зводиться до перерозподілу енергій в системі частинка-хвиля.

    Показано, що кутовий вектор вращательно-поступального руху електронів при квантових переходах змінюється відповідно до квантовим числом квадрата тангенса цього кута.

    Ключові слова: градієнт потенціалу, квантові переходи, корпускулярно-хвильовий дуалізм, геодезичний кут, тутового шовкопряда.

    Korablev G.A.

    PhD in Chemistry, professor, Izhevsk State Agricultural Academy CORPUSCULAR-WAVE PROCESSES

    Abstract

    Two principles of adding energy characteristics of structural interactions are fulfilled if the process flows either along the potential gradient or against it. Transforming these rules onto the corpuscular-wave dualism, we can assume that corpuscular interactions flow along the potential gradient (principle of adding reciprocals of energies), and wave processes - against the potential gradient (principle of algebraic addition of energies). Such approach is confirmed by the empiric equation, in which the act of quantum action is narrowed to the energy redistribution in the system "particle-wave".

    It is demonstrated that the angular vector of rotational-translation motion of electrons at quantum transitions changes in compliance with the quantum number of the square tangent of this angle.

    Keywords: potential gradient, quantum transitions, corpuscular-wave dualism, geodesic angle, silkworm.

    Вступ

    Проблема квантово-хвильового дуалізму була в основному вирішена в період створення квантової механіки. Так, застосування рівняння де-Бройля дозволяє визначити межі прояви таких явищ. Але яке властивість при цьому домінує залежить від умов процесу. І визначити заздалегідь яка частина з них буде працювати в кожному конкретному випадку досить складно, хоча відомо, що хвильова картина частіше має місце при низьких енергіях, а корпускулярна - при високих.

    Один з основоположників квантової механіки Макс Борн з цього приводу сказав: «Кожен процес може бути інтерпретований або з корпускулярної або з хвильової точки зору. Однак доказ того, що ми маємо справу дійсно з частинками або з хвилями лежить за межами наших можливостей, оскільки ми не в змозі визначити всі характерні властивості процесу. Тому можна тільки сказати, що хвильові і


    Ключові слова: Орбітального та обертального руху планет / ORBITAL AND ROTATIONAL MOTION OF PLANETS / ПРЯМЕ І ЗВОРОТНЕ ОБЕРТАННЯ планет / DIRECT AND REVERSE ROTATION OF PLANETS / КУТИ ОБЕРТАННЯ / ROTATION ANGLES / ФОТОСИНТЕЗ / PHOTOSYNTHESIS

    Завантажити оригінал статті:

    Завантажити