The "gold standard" for a bone graft is an autograft. The main complications are associated with the donor location of the bone graft. The bone is a complex biological composite material comprised of collagen fibrils organization, in which the crystals of hydroxyapatite are embedded. The aim of developing a scaffold of calcium phosphate through 3D printing is achievable. Technologically, it should be achieved by spraying of organic or inorganic binders on a horizontally layer of calcium phosphate. Two technologies jet 3D printing and two-photon polymerization can help in creating of new hybrid bone implant.

Анотація наукової статті з біотехнологій в медицині, автор наукової роботи - Dimitar Minkov Minkov


Область наук:
  • Біотехнології в медицині
  • Рік видавництва діє до: 2016
    Журнал: Євразійський Союз Вчених

    Наукова стаття на тему '3D PRINTING OF BONE STRUCTURE - WHY DOES NOT BE DONE WITH A HYBRID PRINTER'

    Текст наукової роботи на тему «3D PRINTING OF BONE STRUCTURE - WHY DOES NOT BE DONE WITH A HYBRID PRINTER»

    ?3d printing of bone structure - why does not be done

    with a hybrid printer

    Dimitar Minkov Minkov

    MD, PhD Orthopaedic and Traumatology Specialist Avis Medica Hospital, Pleven, Bulgaria

    ABSTRACT

    The "gold flandard" for a bone graft is an autograft. The main complications are associated with the donor location of the bone graft. The bone is a complex biological composite material comprised of collagen fibrils organization, in which the cryflals of hydroxyapatite are embedded. The aim of developing a scaffold of calcium phosphate through 3D printing is achievable. Technologically, it should be achieved by spraying of organic or inorganic binders on a horizontally layer of calcium phosphate. Two technologies jet 3D printing and two-photon polymerization can help in creating of new hybrid bone implant.

    Keywords: bone grafts, 3D printing, two-photon polymerization, jet printing, hybrid 3D printer

    Introduction

    Worldwide, 2.2 million bone grafts are carried out per year and their huge number indicates a deficit of donor bone [19]. 500.000 bone grafts are carried out per year in the US, and almofl half of them are associated with spine fusion [11] or with fractures, tumours and congenital diseases [9]. And Brydone at al. noted that around 4.000.000 operations involving bone grafting and bone subflitutes are performed around the world annually [1]. Currently, the "gold flandard" for a bone graft is an autograft, as it possesses all the qualities necessary for the growth of a new bone, namely ofleoconductivity, ofleogenicity and ofleoinductivity .

    The main complications are associated with the donor location of the bone graft and include arteriovenous fiflula, urethral damage, massive blood loss, deep infection, chronic pain and abdominal hernias. An autologous bone graft, obtained from the iliac crefl, is taken and is mofl commonly used in bone reconflructive operations, but it can not be utilized in pediatric cases. Other complications related to the donor location include: pelvic inflability and low back pain, avulsion of the anterior superior iliac spine [7, 8, 20]. The minor complications related to the donor location of the bone graft include problems associated with the wound healing, the formation of a hematoma and cosmetic deformations [4, 10, 12, 18, 30].

    Discussion

    The clinical alternative to the autografts are allogeneic bone grafts taken from a bone bank and taken from cadaver-derived bones. Although they are well known and available; their use is associated with an increase in the cofls of treatment, the risk of immune rejection in some patients, the possibility of infections transmitted by the donor and a loss of mechanical and biological characteriflics possessed by allografts [14,16].

    Because of all these complications and risks accompanying the use of allografts, the bone tissue engineering aims to develop methods for synthesizing and / or regeneration of the bone, which will reflore or improve its function in vivo [22].

    3D printing (3DP) - a technology developed in the early 90's at the Technology Inflitute of Massachusetts (Cambridge, MA) by Sachs at al. - is used in the bone tissue engineering and allows the direct production of such bone scaffolds with a porous structure of CAD files [27].

    A scaffold for bone regeneration mufl meet the following conditions:

    1. To have an appropriate extracellular matrix flructure providing reliable cell adhesion, proliferation and differentiation;

    2. To have an architecture identical to the bone tissue which has to be made of biodegradable or biocompatible

    material;

    3. To have an internal design providing high mechanical flrength to support various loads [5, 26].

    The bone is a complex biological composite material comprised of collagen fibrils organization, in which the cryflals of hydroxyapatite - Ca10 (P04) 6 (OH) 2 are embedded. The aim of developing a scaffold of calcium phosphate through 3D printing is achievable. Technologically, it should be achieved by spraying of organic or inorganic binders on a horizontally layer of calcium phosphate. The size and the diflribution of the particles in the powder used for printing determine the micro porosity and the resolution of the printed material [2]. For the development of a calcium phosphate scaffold, porous hydroxyapatite granules corresponding to a size of 22 ^ m are used and cubic voxel size of 240 ^ m corresponding to a resolution of 106 dpi were achieved and the cavities in the printed scaffold have a minimum size of 100 ^ m [22]. The average particle size of a calcium phosphate in a fludy of Butscher has been 21.20 ± 0.09 ^ m [3]. In a fludy of Inzana at al., The particles 'sizes have been from 30 ^ m to 70 ^ m and the measured porosity of the printed scaffold from 20 ^ m to 50 ^ m [15]. The method, using a powder of calcium phosphate of 3D printing could be used in developing the flructures resembling compact bone and the in vivo experiments conducted by Inzana at al. [15] indicate good ofleoconductivety, but because it is not possible to control the pore size and to achieve the thickness of the trabeculae between 145 ^ m and 192 ^ m, as observed in human trabecular bone, an identical flructure to human trabecular bone could not be created by this method [21].

    Laser technologies allow the creation of mimetic scaffolds with greater precision and reproducibility. Two-photon polymerization (fig.1) allows the production of 3D microfractures with a complex architecture and precise dimensions [24, 25]. This process uses the simultaneous absorption of two photons of infrared (780 nm) or green (515 nm) laser light which takes place at high laser intensity within a spatially localized focus region. The microfractures produced by 2PP-production are precise models of the relevant computer-generated designs and show in vitro good cell adhesion and proliferation [17]. According to Sikavitsas et al., The controlling of the function of the bone cells in vivo can be achieved by designing the scaffold with mechanical characteriflics that permit ofleoinductive fluid flow in the scaffold [28]. This design is possible by associating the three-dimensional image diagnosis, fluid flow modeling and the numerical simulation of the scaffold physical properties.

    Conclusion

    According to Professor Guldberg flructures of platforms

    contracted from biometeriali, mufl often be modified or combined with bioactive components, to achieve the desired properties. [13]

    The creation of a new hybrid 3D printer - through the combination of two technologies - jet 3D printing and two-photon polymerization can help in creating of new hybrid bone implant that would replace the use of autografts and allografts.

    References

    1. Brydone AS, Meek D, Maclaine S. Bone grafting, orthopaedic biomaterials, and the clinical need for bone engineering. Proc Infl Mech Eng H. 2010 Dec; 224 (12): 1329-43.

    2. Butscher A, Powder based three-dimensional printing of calcium phosphate fractures for scaffold engineering, Diss. ETH No. 21210; 2013

    3. Butscher A, Bohner M, Roth C, Ernflberger A, Heuberger R, Doebelin N, et al. Printability of calcium phosphate powders for three-dimensional printing of tissue engineering scaffolds. Acta Biomater. 2012; 8 (1): 373-385.

    4. Catinella FP, De Laria GA, DeWald RL: Falseaneurysm of the superior gluteal artery- a complication of iliiac crefl bone grafting. Spine 15: 1360-1362,1990.

    5. Cheah CM, Chua CK, Leong KF, Chua SW. Development of a tissue engineering scaffold flructure library for rapid prototyping. Part 1: lnvefligation and classification. Int J Adv Manuf Technol 2003; 21: 291-301

    6. Chichkov B. Two-photon no ^ HMeproamoH eHxaH ^ c rapid prototyping меднца ^ devices. SPIE-The International Society for Optical Engineering, 2007

    7. Cohn BT, Krackow KA: Fracture of the iliac crefl following bone grafting-A case report. Orthopedics 11: 473-474, 1988.

    8. Coventry MB, Tapper EM: Pelvic inflability-A consequence of removing iliac bone for grafting. JBone Joint Surg 54A: 83-101, 1972

    9. Dias AG, Lopes MA, Santos JD, Afonso A, Tsuru K, Osaka A, Hayakawa S, Takashima S, Kurabayashi Y. In vivo performance of biodegradable calcium phosphate glass ceramics using the rabbit model: hiflological and SEM observation. J Biomater ApplJan; 20 (3): 253-66; 2006

    10. Escales F, DeWald RL: Combined traumatic arteriovenous fiflula and ureteral iniurv: A complication of bone grafting. J Bone "J4nt Surg'59A: 270-271.1977

    11. Greenwald AS, Boden SD, Goldberg VM, Khan Y, Laurencin CT, Rosier RN; American Academy of Orthopaedic Surgeons. The Committee on Biological Implants. Bone-graft subflitutes: facts, fictions, and applications. J Bone Joint Surg Am. 2001; 83-A Suppl 2 Pt 2: 98-103.

    12. Hamad MM, Majeed SA: Incisional hernia through iliac crefl defects. Arch Orthop Trauma Surg Heppenflall RB: Bone Grafting in Fracture Treatment and Healing. Philadelphia, WB Saunders 1980

    13. Healy KE, Guldberg RE Bone tissue engineering J

    Musculoskelet Neuronal Interact 7 (4): 328-330; 2007

    14. Ikada Y. Tissue Engineering Elsevier Ltd., p.121; 2006

    15. Inzana JA, Olveraa D, Fullerd SM, Kellyd JP, Graeved OA, Schwarza EM, Katesa SL, Awada HA. 3D printing of composite calcium phosphate and collagen scaffolds for bone regeneration Biomaterials. April; 35 (13): 4026-4034. 2014

    16. Kakar S, Einhorn TA Tissue Engineering of Bone.p278; CRC Press, 2005

    17. Koroleva A, Deiwick1 A, Nguyen A, Schlie-Wolter S, Narayan R, Timashev P, Popov V, Bagratashvili V, Chichkov B. Otogenic differentiation of human mesenchymal Sem cells in 3-D Zr-Si organic-inorganic scaffolds produced by two-photon polymerization technique PLOS ONE | D0I: 10.1371 / journal.pone.0118164; 2015

    18. Kurz LT, Garfin SR, Booth RE: Harvefling autogenous iliac bone graft: A review of complication and techniques. Spine 14: 1324-133 1, 1989.

    19. Laurencin C, Khan Y, El-Amin SF. Bone graft subflitutes. Expert Rev Med Devices. 2006 Jan; 3 (1): 49-57.

    20. Laurie SWS, Kaban LB, Mulliken JB, Murray JE: Donor-site morbidity after harvefling rib and iliac bone. J Plafl Reconflr Surg 73: 933-938, 1984

    21. Minkov DM, Rossmanov VB, De Clerck N, De Schutter T, Georgiev G. Micro-computer tomography and bilateral ultrasound ofleometry of patient subject of total hip artheoplafly JBMR, Vol2-2; 2008

    22. Muller B, Deyhle H ,. Fierz FC, Irsen SH, Yoon J Y, Mushkolaj S, Boss O, Vorndran E, Gbureck U, Degiflirici O, Biomimetics and Bioinspiration, Vol. 7401 2009

    23. Nather A. and Zameer A.Bone grafts and bone subflitudes. World Scientific Publishing. 2005 pp.139-154

    24. Nguyen A, Gittard SD, Koroleva A, Schlie S, Gaidukeviciute A. et al. Two-photon polymerization of polyethylene glycol diacrylate scaffolds with riboflavin and triethanolamine used as a water-soluble photoinitiator Aim: Regen Med 8: 51-64. 2013

    25. Raimondi MT, Eaton SM, Nava MM, Lagana M, Cerullo G, et al. Two-photon laser polymerization: from fundamentals to biomedical application in tissue engineering and regenerative medicine. J Appl Biomater Biomech 10: 55-65; 2012

    26. Sachlos E, Czernuszka JT. Making tissue engineering scaffolds work. Review: the application of solid freeform fabrication technology to the production of tissue engineering scaffolds. Eur Cell Mater 2003; 5: 29-39

    27. Sachs E M, et al., Three-dimensional printing techniques, US Patent # 5,204,055.

    28. Sikavitsas VI, Temenoff JS, Mikos AG. Biomaterials and bone mechanotransduction. Biomaterials. 22 (19): 2581-2593; 2001

    29. Thiec M, Leukersc B, Beckmannh F, Wittei F. Bio-mimetic hollow scaffolds for long bone replacement

    30. Younger, E.M. and M.W.Chapman. 1989. Morbidity at bone graft donor sites. J. Orthoped. Trauma 3: 192-195.

    Figure 1. Schematic of the experimental setup used for two photon polymerization (2PP) processing [6].

    комп'ютерна томографія в діагностиці неоплазии

    передміхурової залози

    Калачова Ельвіра Ильдаровна

    Аспірант кафедри загальної хірургії, м Уфа

    Байков Денис Енверович

    Д.м.н. професор кафедри загальної хірургії, м Уфа

    Павлов Валентин Миколайович

    Д.м.н. професор, завідувач кафедри урології, м Уфа

    Ряховский Андрій Євгенович

    Аспірант кафедри патологічної фізіології, г. Уфа

    Назмутдінова Регіна Ранісовна

    Студентка III курсу лікувального факультету, г. Уфа

    Гайсина Юлія Інсафовна

    Студентка III курсу лікувального факультету, г. Уфа

    АНОТАЦІЯ

    Метою даної роботи було визначення за допомогою мультіспіральной комп'ютерної томографії ознак неопластических змін передміхурової залози серед пацієнтів клініки. В ході дослідження виявлено: збільшення залози в об'ємі, структурні зміни паренхіми залози, при фазовому контрастировании у кількох пацієнтів візуалізувалися вогнища патологічного накопичення контрастного препарату в тканини залози, регіонарна лімфоадено-патия [1, с. 97]. Встановлено високу діагностична значимість мультіспіральной комп'ютерної томографії, особливо в поєднанні з фазовим контрастуванням, в діагностиці неопластичних процесів передміхурової залози, при цьому описаний метод, на нашу думку, є скоріше доповнює традиційні УЗД та МРТ [2, с. 27].

    ABSTRACT

    The aim of this &udy was to determine using multislice computed tomography signs of neopla ^ ic changes of the prolate among clinic patients. The &udy found an increase in the volume of the prolate, a gland parenchyma Sructural changes, in a phase contra ^ ing in several patients visualized lesions pathological accumulation of contra ^ agent in the breaS tissue, regional lymphadenopathy. The high diagno ^ ic value of multislice computed tomography, especially when combined with the phase contra ^, in the diagnosis of neopla ^ ic processes of the prolate, and the method described, in our opinion, is more complementary traditional ultrasound and MRI.

    Ключові слова: передміхурова залоза, неоплазія, комп'ютерна томографія.

    Keywords: pro&ate, neoplasia, CT.

    Злоякісні неоплазии передміхурової залози проявів і це при тому, що Виявлення їх на профі- (ПЖ) характеризуються широкою варіабельністю своїх лактіческіх оглядах за допомогою традиційних методів


    Ключові слова: BONE GRAFTS / 3D PRINTING / TWO-PHOTON POLYMERIZATION / JET PRINTING / HYBRID 3D PRINTER

    Завантажити оригінал статті:

    Завантажити